
SEGMENT TREES & RELATED TOPICS Tian Cilliers, Training Camp 2,

9-10 February 2019

INTRODUCTION Why do we even use segment

trees?

SAMPLE PROBLEM

 You have a list of military boats with varying sizes, and in order to intimidate your
opponents, you want to answer your superiors asking for the sum of the sizes of all
boats in a certain range. Let N be the number of boats and Q be the number of
queries. Brute forcing by looping over the range for each query runs in O(NQ) time.

10 1 5 9 23 7 7 11

5+9+23+7 = 44

POSSIBLE SOLUTION

 Precalculate prefix sums, in other words the sum of the sizes of all boats up to a
certain boat. This can be done in O(N) time by keeping a running sum. The sum of a
range can then be calculated by subtracting the prefix sum one left of the leftmost
item from the prefix sum up to the rightmost item. This totals to O(N) precomputing
and O(1) runtime per query, for a total of O(N+Q).

10 1 5 9 23 7 7 11

10 11 16 25 48 55 62 73

55-11 = 44

PROBLEMS WITH SOLUTION

 As we can see, the proposed solution runs quite quickly, but has a few limitations.
Firstly, if we needed the maximum of a range (RMQ) instead of the sum, prefix sums
would not work. More importantly, however, prefix sums are unable to handle
updates to the items. If any item in the list is updated, all the prefix sums including the
item needs to be updated.

 If the problem is modified by stating that some amount U of updates to specific items
are performed in between queries, the time complexity would be increased to
O(UN+Q). Is this able to be improved on? Can we devise a fast way to do RMQ as
well?

SEGMENT TREES In all their O(logN) query and

update beauty

WHAT IS A SEGMENT TREE?

 A segment tree is simply a binary tree, that
is, a tree where each node has two child
nodes. In a segment tree, the leaves
represent data values, and each non-leaf
node represents some associative operation
on its children (for example the maximum
or sum of its children).

30 14 11

10 1 5 9 23 7 7 11

18

25 48

73

EXAMPLE IMPLEMENTATION

 To implement the data structure, a simple
array with two times the length of the
amount of data values required could
be used. Rooting the tree with the index
1 also allows easy movement between
parent and child nodes by dividing by
two and getting the floor of that to find
the parent index.

30 14 11

10 1 5 9 23 7 7 11

18

25 48

73
1

2 3

4 5 6 7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

73 25 48 11 14 30 18 10 1 5 9 23 7 7 11

48

73

21

28

46

71

UPDATING A SINGLE ITEM

 Since each parent node is reachable by
using the floor of the child node’s index
divided by two, climbing the tree while
updating is trivial. Care must be taken,
however, to initially convert between the
index of the value and the index in the
tree. Due to the structure of the tree,
updating can thus be done in O(logN)
runtime.

30 14 11

10 1 5 9 23 7 7 11

18

25

1

2 3

4 5 6 7

8

EXAMPLE UPDATING CODE

QUERYING A RANGE

 The key when querying is to include the
highest nodes that completely covers
part of the queried range. This can be
done by keeping a left and right pointer,
if necessary processing the node and
shifting the pointer inward to be on the
outer node of a parent, moving both up
a level, and repeating. Again, this takes
O(logN) time.

30 14 11

10 1 5 9 23 7 7 11

18

25 48

73
1

2 3

4 5 6 7

8

14 +48 = 62

EXAMPLE QUERYING CODE

TIME AND SPACE COMPLEXITY

 As we saw, both updating a single value and querying a range takes O(logN)
runtime. In addition, it can be seen that the space required is 2N, or O(N).

 This means that the problem mentioned earlier could be run in O((Q+U)logN) time
instead of O(UN+Q) when using prefix sums.

CONDENSED CODE

FENWICK TREES Take segment trees and add a

sprinkle of binary magic

WHAT IS A FENWICK TREE?

 Fenwick Trees, also known as Binary
Indexed Trees, are a type of segment
tree. To understand them, it is necessary
to realize that segment trees storing a
reversible operation, like sums, are in
fact containing redundant information.
When a node contains the sum of its
children, one of the child nodes is
unnecessary, since its value can be
calculated. Fenwick Trees allow similar
O(logN) updating and querying, but with
a simplified query implementation.

30 14 11

10 1 5 9 23 7 7 11

18

25 48

73

EXAMPLE IMPLEMENTATION

 These remaining nodes can them be
organized into a specific structure and
be stored in an array with length N.
Considering the binary representation of
the indices of each node leads to an
important observation that will be useful
when doing updates and queries.

30 14 11

10 1 5 9 23 7 7 11

18

25 48

73

1 2 3 4 5 6 7 8

0001 0010 0011 0100 0101 0110 0111 1000

UPDATING A SINGLE ITEM

 First, we just do an update like with a
regular segment tree, keeping in mind
that some nodes do not need to be
visited since their values can be
calculated using the rest.

30 14 11

10 1 5 9 23 7 7 11

18

25 48

73

1 2 3 4 5 6 7 8

0001 0010 0011 0100 0101 0110 0111 1000

2

11

22

70

 Notice that the binary representation of
the indices of nodes we updated was as
follows: 0011 > 0100 > 1000

 It can further be seen that, to update
any index, the least significant bit has to
be added until the root is reached.

FINDING THE LEAST SIGNIFICANT BIT

 To find the LSB, we use the fact that,
when subtracting one from a number, the
LSB changes to zero and all the zeroes
following the LSB are changed to ones.
When inverting this result, the only bit
that is on in the original and this inverted
result is the LSB, since the bits before the
LSB are all inverted and the bits
following the LSB are all zero in the
result.

 1001011000 (original number)

 1001010111 (subtracted one)

 0110101000 (inverted)

 0000001000 (bitwise and with original)

EXAMPLE UPDATING CODE

QUERYING A RANGE

 While it is impossible to directly query a
specific range in a Fenwick tree, a prefix
range can be queried, and due to the
reversible nature required, two prefix
ranges can be used to get any range.

 In order to query a prefix range, exactly
the opposite is done as when updating.
Instead of adding the LSB, it is
subtracted. This includes the highest
nodes that cover the entire range.

 In the example the indices used are as
follows: 0111 > 0110 > 0100 > 0000

30 14 11

10 1 5 9 23 7 7 11

18

25 48

73

1 2 3 4 5 6 7 8

0001 0010 0011 0100 0101 0110 0111 1000

7 +30 = 62 +25

EXAMPLE QUERYING CODE

WHY BRUCE IS A GOD The comprehensive analysis of

Bruce Merry’s godlike nature

LAZY UPDATES Not suitable for lazy coders, by

the way

ON RANGE UPDATES

 Sometimes it is necessary to not only update a single item at a time, but rather an
contiguous range of items. Using a normal segment or Fenwick tree, this would run in
O(NlogN). While still relatively fast, this can be improved on.

 Lazy updating or lazy propagation is a way to improve the speed of range updates
by updating top-down and overriding nodes where the entire range of the node is to
be updated, and only updating children when querying or otherwise needed. This
can get both range updating and querying done in O(logN) amortised time, but with
a small constant penalty to both.

48 33

73 65

30 15

23 8

4x8

LAZY UPDATING

 The idea when updating a range lazily
is to start at the root, and if a node is
completely contained in the range,
override its value and mark it. If not,
recursively do the same on both children.
If it is entirely out of the range, do
nothing.

14 11

10 1 5 9 7 7 11

18

25

1

2 3

4 5 6 7

8

8

EXAMPLE LAZY UPDATE CODE

EXAMPLE LAZY UPDATE CODE

8

4x8

65

33

QUERYING LAZY UPDATES

 When querying from the root down, it is
important to know that a node’s value
can be used directly if it is contained in
the range, but if not, any previous
updates applied to it needs to be
carried over to its children before it can
be used. 8

30 14 11

10 1 5 9 7 7 11

18

1

2 3

4 5 6 7

EXAMPLE LAZY QUERYING CODE

HIGHER DIMENSIONS Honestly I just included this part

because of my beautiful method

THE NEED FOR HIGHER DIMENSIONS

 Higher dimension segment trees exist, and it is in fact possible to generalize a lot of
the code to make a K-dimensional segment tree. This can be used to get the sum,
maximum or minimum of a rectangle, box, or any K-dimensional region in O((logN)K).

 While there are a few methods that can be used to do this, I have not put the effort
in to understand the usual way of having a ‘segment tree of segment trees’, as seen in
this diagram, but will rather teach my own method.

EXAMPLE IMPLEMENTATION (2D)

 In order to represent the data properly, we
apply a quadtree, or a tree where each
node has 4 children in two rows and two
columns. This quadtree is queried in much
the same way as a segment tree is queried
from the bottom up, leading to an intuitive
and easy to figure out method. This
quadtree, however, requires some extra
information about specific ranges in a row
or column of the quadtree, which we use
segment trees for.

2D

1D

OPTIMAL STRUCTURE (2D)

 This quadtree, with accompanying
segment trees for each row and column
of each level of the quadtree, can
conveniently be laid out in a 2Nx2N
array, with the layout as shown right. This
has the additional advantage of
allowing providing easy queries in all
trees, as both X and Y need to be
halved to move up one level in the
quadtree, and only one of them to move
one level in the corresponding segment
tree.

EXAMPLE UPDATING CODE (2D)

EXAMPLE QUERYING CODE (2D)

EXAMPLE QUERYING CODE (2D)

THREE-DIMENSIONAL AND FURTHER

 While it is possible to extend the above
code to any amount of dimensions, it does
become quite cumbersome, even at 3
dimensions. This might be possible to be
alleviated by using a top-down recursive
strategy instead of a bottom-up iterative
one, but the basic idea would remain the
same. For interest, here is a simplified
model of what the 3D structure would look
like.

EXAMPLE PROBLEMS Because we all love to see how

easy something is in retrospect

QUESTIONS I was really confused myself

when first introduced to segtrees

