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INTRODUCTION Why do we even use segment 

trees? 



SAMPLE PROBLEM 

 You have a list of military boats with varying sizes, and in order to intimidate your 
opponents, you want to answer your superiors asking for the sum of the sizes of all 
boats in a certain range. Let N be the number of boats and Q be the number of 
queries. Brute forcing by looping over the range for each query runs in O(NQ) time. 

10 1 5 9 23 7 7 11 

5+9+23+7 = 44 



POSSIBLE SOLUTION 

 Precalculate prefix sums, in other words the sum of the sizes of all boats up to a 
certain boat. This can be done in O(N) time by keeping a running sum. The sum of a 
range can then be calculated by subtracting the prefix sum one left of the leftmost 
item from the prefix sum up to the rightmost item. This totals to O(N) precomputing 
and O( 1) runtime per query, for a total of O(N+Q). 

10 1 5 9 23 7 7 11 

10 11 16 25 48 55 62 73 

55-11 = 44 



PROBLEMS WITH SOLUTION 

 As we can see, the proposed solution runs quite quickly, but has a few limitations. 
Firstly, if we needed the maximum of a range (RMQ) instead of the sum, prefix sums 
would not work. More importantly, however, prefix sums are unable to handle 
updates to the items. If any item in the list is updated, all the prefix sums including the 
item needs to be updated. 

 If the problem is modified by stating that some amount U of updates to specific items 
are performed in between queries, the time complexity would be increased to 
O(UN+Q). Is this able to be improved on? Can we devise a fast way to do RMQ as 
well? 



SEGMENT TREES In all their O(logN) query and 

update beauty 



WHAT IS A SEGMENT TREE? 

 A segment tree is simply a binary tree, that 
is, a tree where each node has two child 
nodes. In a segment tree, the leaves 
represent data values, and each non-leaf 
node represents some associative operation 
on its children (for example the maximum 
or sum of its children). 
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EXAMPLE IMPLEMENTATION 

 To implement the data structure, a simple 
array with two times the length of the 
amount of data values required could 
be used. Rooting the tree with the index 
1 also allows easy movement between 
parent and child nodes by dividing by 
two and getting the floor of that to find 
the parent index.  
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UPDATING A SINGLE ITEM 

 Since each parent node is reachable by 
using the floor of the child node’s index 
divided by two, climbing the tree while 
updating is trivial. Care must be taken, 
however, to initially convert between the 
index of the value and the index in the 
tree. Due to the structure of the tree, 
updating can thus be done in O(logN) 
runtime. 
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EXAMPLE UPDATING CODE 



QUERYING A RANGE 

 The key when querying is to include the 
highest nodes that completely covers 
part of the queried range. This can be 
done by keeping a left and right pointer, 
if necessary processing the node and 
shifting the pointer inward to be on the 
outer node of a parent, moving both up 
a level, and repeating. Again, this takes 
O(logN) time. 
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14 +48  = 62 



EXAMPLE QUERYING CODE 



TIME AND SPACE COMPLEXITY 

 As we saw, both updating a single value and querying a range takes O(logN) 
runtime. In addition, it can be seen that the space required is 2N, or O(N).  

 This means that the problem mentioned earlier could be run in O((Q+U)logN) time 
instead of O(UN+Q) when using prefix sums. 



CONDENSED CODE 



FENWICK TREES Take segment trees and add a 

sprinkle of binary magic 



WHAT IS A FENWICK TREE? 

 Fenwick Trees, also known as Binary 
Indexed Trees, are a type of segment 
tree. To understand them, it is necessary 
to realize that segment trees storing a  
reversible operation, like sums, are in 
fact containing redundant information. 
When a node contains the sum of its 
children, one of the child nodes is 
unnecessary, since its value can be 
calculated. Fenwick Trees allow similar 
O(logN) updating and querying, but with 
a simplified query implementation. 
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EXAMPLE IMPLEMENTATION 

 These remaining nodes can them be 
organized into a specific structure and 
be stored in an array with length N. 
Considering the binary representation of 
the indices of each node leads to an 
important observation that will be useful 
when doing updates and queries. 
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1 2 3 4 5 6 7 8 

0001 0010 0011 0100 0101 0110 0111 1000 



UPDATING A SINGLE ITEM 

 First, we just do an update like with a 
regular segment tree, keeping in mind 
that some nodes do not need to be 
visited since their values can be 
calculated using the rest. 
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 Notice that the binary representation of 
the indices of nodes we updated was as 
follows: 0011 > 0100 > 1000 

 It can further be seen that, to update 
any index, the least significant bit has to 
be added until the root is reached. 



FINDING THE LEAST SIGNIFICANT BIT 

 To find the LSB, we use the fact that, 
when subtracting one from a number, the 
LSB changes to zero and all the zeroes 
following the LSB are changed to ones. 
When inverting this result, the only bit 
that is on in the original and this inverted 
result is the LSB, since the bits before the 
LSB are all inverted and the bits 
following the LSB are all zero in the 
result. 

 1001011000 (original number) 

 1001010111 (subtracted one) 

 0110101000 (inverted) 

 0000001000 (bitwise and with original) 



EXAMPLE UPDATING CODE 



QUERYING A RANGE 

 While it is impossible to directly query a 
specific range in a Fenwick tree, a prefix 
range can be queried, and due to the 
reversible nature required, two prefix 
ranges can be used to get any range. 

 In order to query a prefix range, exactly 
the opposite is done as when updating. 
Instead of adding the LSB, it is 
subtracted. This includes the highest 
nodes that cover the entire range. 

 In the example the indices used are as 
follows: 0111 > 0110 > 0100 > 0000 
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0001 0010 0011 0100 0101 0110 0111 1000 

7 +30  = 62 +25 



EXAMPLE QUERYING CODE 



WHY BRUCE IS A GOD The comprehensive analysis of 

Bruce Merry’s godlike nature 



LAZY UPDATES Not suitable for lazy coders, by 

the way 



ON RANGE UPDATES 

 Sometimes it is necessary to not only update a single item at a time, but rather an 
contiguous range of items. Using a normal segment or Fenwick tree, this would run in 
O(NlogN). While still relatively fast, this can be improved on. 

 Lazy updating or lazy propagation is a way to improve the speed of range updates 
by updating top-down and overriding nodes where the entire range of the node is to 
be updated, and only updating children when querying or otherwise needed. This 
can get both range updating and querying done in O(logN) amortised time, but with 
a small constant penalty to both. 
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LAZY UPDATING 

 The idea when updating a range lazily 
is to start at the root, and if a node is 
completely contained in the range, 
override its value and mark it. If not, 
recursively do the same on both children. 
If it is entirely out of the range, do 
nothing. 
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EXAMPLE LAZY UPDATE CODE 



EXAMPLE LAZY UPDATE CODE 
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QUERYING LAZY UPDATES 

 When querying from the root down, it is 
important to know that a node’s value 
can be used directly if it is contained in 
the range, but if not, any previous 
updates applied to it needs to be 
carried over to its children before it can 
be used. 8 
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EXAMPLE LAZY QUERYING CODE 



HIGHER DIMENSIONS Honestly I just included this part 

because of my beautiful method 



THE NEED FOR HIGHER DIMENSIONS 

 Higher dimension segment trees exist, and it is in fact possible to generalize a lot of 
the code to make a K-dimensional segment tree. This can be used to get the sum, 
maximum or minimum of a rectangle, box, or any K-dimensional region in O((logN)K). 

 While there are a few methods that can be used to do this, I have not put the effort 
in to understand the usual way of having a ‘segment tree of segment trees’, as seen in 
this diagram, but will rather teach my own method. 



EXAMPLE IMPLEMENTATION (2D) 

 In order to represent the data properly, we 
apply a quadtree, or a tree where each 
node has 4 children in two rows and two 
columns. This quadtree is queried in much 
the same way as a segment tree is queried 
from the bottom up, leading to an intuitive 
and easy to figure out method. This 
quadtree, however, requires some extra 
information about specific ranges in a row 
or column of the quadtree, which we use 
segment trees for. 

2D 

1D 



OPTIMAL STRUCTURE (2D) 

 This quadtree, with accompanying 
segment trees for each row and column 
of each level of the quadtree, can 
conveniently be laid out in a 2Nx2N 
array, with the layout as shown right. This 
has the additional advantage of 
allowing providing easy queries in all 
trees, as both X and Y need to be 
halved to move up one level in the 
quadtree, and only one of them to move 
one level in the corresponding segment 
tree. 



EXAMPLE UPDATING CODE (2D) 



EXAMPLE QUERYING CODE (2D) 



EXAMPLE QUERYING CODE (2D) 



THREE-DIMENSIONAL AND FURTHER 

 While it is possible to extend the above 
code to any amount of dimensions, it does 
become quite cumbersome, even at 3 
dimensions. This might be possible to be 
alleviated by using a top-down recursive 
strategy instead of a bottom-up iterative 
one, but the basic idea would remain the 
same. For interest, here is a simplified 
model of what the 3D structure would look 
like. 



EXAMPLE PROBLEMS Because we all love to see how 

easy something is in retrospect 



QUESTIONS I was really confused myself 

when first introduced to segtrees 


